真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

mahout0.8入門

mahout-distribution-0.8

命令行對應(yīng)哪個類可以查看源碼配置文件

創(chuàng)新互聯(lián)公司是一家專業(yè)的成都網(wǎng)站建設(shè)公司,我們專注成都做網(wǎng)站、成都網(wǎng)站設(shè)計、網(wǎng)絡(luò)營銷、企業(yè)網(wǎng)站建設(shè),友情鏈接1元廣告為企業(yè)客戶提供一站式建站解決方案,能帶給客戶新的互聯(lián)網(wǎng)理念。從網(wǎng)站結(jié)構(gòu)的規(guī)劃UI設(shè)計到用戶體驗提高,創(chuàng)新互聯(lián)力求做到盡善盡美。

driver.classes.default.props

mahout的API

https://builds.apache.org/job/Mahout-Quality/javadoc/


mahout實戰(zhàn)參考博客:

http://itindex.net/detail/45259-mahout-%E7%94%B5%E5%BD%B1-%E6%8E%A8%E8%8D%90%E7%B3%BB%E7%BB%9F

聚類算法

kmeans:無法消除離群點的影響

canopy:兩個閾值t1和t2,且t1>t2,簡單快速不太準(zhǔn)確,可以消除離群點的影響,一般用來決定聚類中心數(shù)目k

Canopy聚類算法
http://my.oschina.net/liangtee/blog/125407

mahout canopy算法實戰(zhàn)

http://blog.csdn.net/xyilu/article/details/9631677

分類Bayes(訓(xùn)練集,基于概率的)、文本分類算法(監(jiān)督學(xué)習(xí))

樸素貝葉斯分類器兩種模型:

  1. 多項式模型,以單詞打標(biāo)簽,粒度不一樣

  2. 伯努利模型,以文檔打標(biāo)簽

用于新聞分類:體育、娛樂

mahout中提供了一種將指定文件下的文件轉(zhuǎn)換成sequenceFile的方式。

mahout seqdirectory --input /hive/hadoopuser/ --output /mahout/seq/ --charset UTF-8

二進(jìn)制文件轉(zhuǎn)換為向量

mahout seq2sparse

完成樸素貝葉斯分類(中文分詞)

f.dataguru.cn/thread-244375-1-1.html

http://www.cnblogs.com/panweishadow/p/4320720.html

低版本中還是老的貝葉斯testclassifier

0.11已經(jīng)是新貝葉斯

#Classification
#new bayes
org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob = trainnb : Train the Vector-based Bayes classifier
org.apache.mahout.classifier.naivebayes.test.TestNaiveBayesDriver = testnb : Test the Vector-based Bayes classifier

cbayes=ComplementaryNaiveBayes

TestNaiveBayesDriver源碼

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.mahout.classifier.naivebayes.test;

import java.io.IOException;
import java.util.List;
import java.util.Map;
import java.util.regex.Pattern;

import com.google.common.base.Preconditions;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.classifier.ClassifierResult;
import org.apache.mahout.classifier.ResultAnalyzer;
import org.apache.mahout.classifier.naivebayes.AbstractNaiveBayesClassifier;
import org.apache.mahout.classifier.naivebayes.BayesUtils;
import org.apache.mahout.classifier.naivebayes.ComplementaryNaiveBayesClassifier;
import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;
import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;
import org.apache.mahout.common.AbstractJob;
import org.apache.mahout.common.HadoopUtil;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.commandline.DefaultOptionCreator;
import org.apache.mahout.common.iterator.sequencefile.PathFilters;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * Test the (Complementary) Naive Bayes model that was built during training
 * by running the iterating the test set and comparing it to the model
 */
public class TestNaiveBayesDriver extends AbstractJob {

  private static final Logger log = LoggerFactory.getLogger(TestNaiveBayesDriver.class);

  public static final String COMPLEMENTARY = "class"; //b for bayes, c for complementary
  private static final Pattern SLASH = Pattern.compile("/");

  public static void main(String[] args) throws Exception {
    ToolRunner.run(new Configuration(), new TestNaiveBayesDriver(), args);
  }

  @Override
  public int run(String[] args) throws Exception {
    addInputOption();
    addOutputOption();
    addOption(addOption(DefaultOptionCreator.overwriteOption().create()));
    addOption("model", "m", "The path to the model built during training", true);
    addOption(buildOption("testComplementary", "c", "test complementary?", false, false, String.valueOf(false)));
    addOption(buildOption("runSequential", "seq", "run sequential?", false, false, String.valueOf(false)));
    addOption("labelIndex", "l", "The path to the location of the label index", true);
    Map> parsedArgs = parseArguments(args);
    if (parsedArgs == null) {
      return -1;
    }
    if (hasOption(DefaultOptionCreator.OVERWRITE_OPTION)) {
      HadoopUtil.delete(getConf(), getOutputPath());
    }

    boolean sequential = hasOption("runSequential");
    boolean succeeded;
    if (sequential) {
       runSequential();
    } else {
      succeeded = runMapReduce();
      if (!succeeded) {
        return -1;
      }
    }

    //load the labels
    Map labelMap = BayesUtils.readLabelIndex(getConf(), new Path(getOption("labelIndex")));

    //loop over the results and create the confusion matrix
    SequenceFileDirIterable dirIterable =
        new SequenceFileDirIterable<>(getOutputPath(), PathType.LIST, PathFilters.partFilter(), getConf());
    ResultAnalyzer analyzer = new ResultAnalyzer(labelMap.values(), "DEFAULT");
    analyzeResults(labelMap, dirIterable, analyzer);

    log.info("{} Results: {}", hasOption("testComplementary") ? "Complementary" : "Standard NB", analyzer);
    return 0;
  }

  private void runSequential() throws IOException {
    boolean complementary = hasOption("testComplementary");
    FileSystem fs = FileSystem.get(getConf());
    NaiveBayesModel model = NaiveBayesModel.materialize(new Path(getOption("model")), getConf());
    
    // Ensure that if we are testing in complementary mode, the model has been
    // trained complementary. a complementarty model will work for standard classification
    // a standard model will not work for complementary classification
    if (complementary){
        Preconditions.checkArgument((model.isComplemtary()),
            "Complementary mode in model is different from test mode");
    }
    
    AbstractNaiveBayesClassifier classifier;
    if (complementary) {
      classifier = new ComplementaryNaiveBayesClassifier(model);
    } else {
      classifier = new StandardNaiveBayesClassifier(model);
    }

    try (SequenceFile.Writer writer =
             SequenceFile.createWriter(fs, getConf(), new Path(getOutputPath(), "part-r-00000"),
                 Text.class, VectorWritable.class)) {
      SequenceFileDirIterable dirIterable =
          new SequenceFileDirIterable<>(getInputPath(), PathType.LIST, PathFilters.partFilter(), getConf());
      // loop through the part-r-* files in getInputPath() and get classification scores for all entries
      for (Pair pair : dirIterable) {
        writer.append(new Text(SLASH.split(pair.getFirst().toString())[1]),
            new VectorWritable(classifier.classifyFull(pair.getSecond().get())));
      }
    }
  }

  private boolean runMapReduce() throws IOException,
      InterruptedException, ClassNotFoundException {
    Path model = new Path(getOption("model"));
    HadoopUtil.cacheFiles(model, getConf());
    //the output key is the expected value, the output value are the scores for all the labels
    Job testJob = prepareJob(getInputPath(), getOutputPath(), SequenceFileInputFormat.class, BayesTestMapper.class,
        Text.class, VectorWritable.class, SequenceFileOutputFormat.class);
    //testJob.getConfiguration().set(LABEL_KEY, getOption("--labels"));


    boolean complementary = hasOption("testComplementary");
    testJob.getConfiguration().set(COMPLEMENTARY, String.valueOf(complementary));
    return testJob.waitForCompletion(true);
  }

  private static void analyzeResults(Map labelMap,
                                     SequenceFileDirIterable dirIterable,
                                     ResultAnalyzer analyzer) {
    for (Pair pair : dirIterable) {
      int bestIdx = Integer.MIN_VALUE;
      double bestScore = Long.MIN_VALUE;
      for (Vector.Element element : pair.getSecond().get().all()) {
        if (element.get() > bestScore) {
          bestScore = element.get();
          bestIdx = element.index();
        }
      }
      if (bestIdx != Integer.MIN_VALUE) {
        ClassifierResult classifierResult = new ClassifierResult(labelMap.get(bestIdx), bestScore);
        analyzer.addInstance(pair.getFirst().toString(), classifierResult);
      }
    }
  }
}


 BayesTestMapper源碼

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.mahout.classifier.naivebayes.test;

import com.google.common.base.Preconditions;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.mahout.classifier.naivebayes.AbstractNaiveBayesClassifier;
import org.apache.mahout.classifier.naivebayes.ComplementaryNaiveBayesClassifier;
import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;
import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;
import org.apache.mahout.common.HadoopUtil;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable;

import java.io.IOException;
import java.util.regex.Pattern;

/**
 * Run the input through the model and see if it matches.
 * 

 * The output value is the generated label, the Pair is the expected label and true if they match:  */ public class BayesTestMapper extends Mapper {   private static final Pattern SLASH = Pattern.compile("/");   private AbstractNaiveBayesClassifier classifier;   @Override   protected void setup(Context context) throws IOException, InterruptedException {     super.setup(context);     Configuration conf = context.getConfiguration();     Path modelPath = HadoopUtil.getSingleCachedFile(conf);     NaiveBayesModel model = NaiveBayesModel.materialize(modelPath, conf);     boolean isComplementary = Boolean.parseBoolean(conf.get(TestNaiveBayesDriver.COMPLEMENTARY));          // ensure that if we are testing in complementary mode, the model has been     // trained complementary. a complementarty model will work for standard classification     // a standard model will not work for complementary classification     if (isComplementary) {       Preconditions.checkArgument((model.isComplemtary()),           "Complementary mode in model is different than test mode");     }          if (isComplementary) {       classifier = new ComplementaryNaiveBayesClassifier(model);     } else {       classifier = new StandardNaiveBayesClassifier(model);     }   }   @Override   protected void map(Text key, VectorWritable value, Context context) throws IOException, InterruptedException {     Vector result = classifier.classifyFull(value.get());     //the key is the expected value     context.write(new Text(SLASH.split(key.toString())[1]), new VectorWritable(result));   } }


名稱欄目:mahout0.8入門
鏈接地址:http://weahome.cn/article/pjcjjg.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部