小編給大家分享一下Hadoop中MapTask如何實現(xiàn),希望大家閱讀完這篇文章之后都有所收獲,下面讓我們一起去探討吧!
向陽ssl適用于網(wǎng)站、小程序/APP、API接口等需要進行數(shù)據(jù)傳輸應用場景,ssl證書未來市場廣闊!成為創(chuàng)新互聯(lián)的ssl證書銷售渠道,可以享受市場價格4-6折優(yōu)惠!如果有意向歡迎電話聯(lián)系或者加微信:18980820575(備注:SSL證書合作)期待與您的合作!
整體執(zhí)行流程
如上圖示,MapTask的整個處理流程分五個階段:
●read階段:通過RecordReader從InputSplit分片中將數(shù)據(jù)解析成一個個key/value。
●map階段:將由RecordReader解析出的key/value交給map()方法處理,并生成一個個新的key/value。
●collect階段:將map()中新生成key/value由OutpCollector.collect()寫入內存中的環(huán)形數(shù)據(jù)緩沖區(qū)。
●spill階段:當環(huán)形緩沖區(qū)達到一定閥值后,會將數(shù)據(jù)寫到本地磁盤上,生成一個spill文件。在寫文件之前,會先將數(shù)據(jù)進行一次本地排序,必要的時候(按配置要求)還會對數(shù)據(jù)進行壓縮。
●combine階段:當所有數(shù)據(jù)處理完后,將所有的臨時的spill文件進行一次合并,最終之生成一個數(shù)據(jù)文件。
接下來我們會對該流程中最重要的collect、spill和combine三個階段進行更深入的學習。
Collect過程
前階段的map中新生成key/value對后,會調用OutpCollector.collect(key,value),在該方法內部,先調用Partitioner.getPartition()獲取該記錄的分區(qū)號,然后將
MapOutputBuffer內部使用了一個內部的環(huán)形的緩沖區(qū)來暫時保存用戶的輸出數(shù)據(jù),當緩沖區(qū)使用率達到一定閥值后,由SpillThread線程將緩沖區(qū)中的數(shù)據(jù)spill到本地磁盤上,當所有的數(shù)據(jù)處理完畢后,對所有的文件進行合并,最終只生成一個文件。該數(shù)據(jù)緩沖區(qū)直接用想到MapTask的寫效率。
環(huán)形緩沖區(qū)使得collect階段和spill階段可以并行處理。
MapOutputBuffer內部采用了兩級索引結構,涉及三個環(huán)形的內存緩沖區(qū),分別是kvoffsets、kvindices和kvbuffer,這個環(huán)形緩沖區(qū)的大小可以通過io.sot.mb來設置,默認大小是100MB,圖示如下:
kvoffsets即偏移量索引數(shù)組,用于保存key/value在kvindices中的偏移量。一個key/value對在kvoffsets數(shù)組中占一個int的大小,而在kvindices數(shù)組中站3個int的大小(如上圖示,包括分區(qū)號partition,key的起始位置和value的起始位置)。
當kvoffsets的使用率超過io.sort.spill.percent(默認為80%)后,便會觸發(fā)SpillTread線程將數(shù)據(jù)spill到磁盤上。
kvindices即文職索引數(shù)組,用于保存實際的key/value在數(shù)據(jù)緩沖區(qū)kvbuffer中的起始位置。
kvbuffer即數(shù)據(jù)局緩沖區(qū),用于實際保存key/value,默認情況下可使用io.sort.mb的95%,當該緩沖區(qū)使用率使用率超過io.sort.spill.percent后,便會觸發(fā)SpillTread線程將數(shù)據(jù)spill到磁盤上。
Spill過程
在collect階段的執(zhí)行過程中,當內存中的環(huán)形數(shù)據(jù)緩沖區(qū)中的數(shù)據(jù)達到一定發(fā)之后,便會觸發(fā)一次Spill操作,將部分數(shù)據(jù)spill到本地磁盤上。SpillThread線程實際上是kvbuffer緩沖區(qū)的消費者,主要代碼如下:
Java代碼
spillLock.lock();
while(true){
spillDone.sinnal();
while(kvstart == kvend){
spillReady.await();
}
spillDone.unlock();
//排序并將緩沖區(qū)kvbuffer中的數(shù)據(jù)spill到本地磁盤上
sortAndSpill();
spillLock.lock;
//重置各個指針,為下一下spill做準備
if(bufend < bufindex && bufindex < bufstart){
bufvoid = kvbuffer.length;
}
vstart = vend;
bufstart = bufend;
}
spillLock.unlock();
sortAndSpill()方法中的內部流程是這樣的:
第一步,使用用快速排序算法對kvbuffer[bufstart,bufend)中的數(shù)據(jù)排序,先對partition分區(qū)號排序,然后再按照key排序,經(jīng)過這兩輪排序后,數(shù)據(jù)就會以分區(qū)為單位聚集在一起,且同一分區(qū)內的數(shù)據(jù)按key有序;
第二步,按分區(qū)大小由小到大依次將每個分區(qū)中的數(shù)據(jù)寫入任務的工作目錄下的臨時文件中,如果用戶設置了Combiner,則寫入文件之前,會對每個分區(qū)中的數(shù)據(jù)做一次聚集操作,比如
第三步,將分區(qū)數(shù)據(jù)的元信息寫到內存索引數(shù)據(jù)結構SpillRecord中。分區(qū)的元數(shù)據(jù)信息包括臨時文件中的偏移量、壓縮前數(shù)據(jù)的大小和壓縮后數(shù)據(jù)的大小。
Combine過程
當任務的所有數(shù)據(jù)都處理完后,MapTask會將該任務所有的臨時文件年合并成一個大文件,同時生成相應的索引文件。在合并過程中,是以分區(qū)文單位進行合并的。
讓每個Task最終生成一個文件,可以避免同時打開大量文件和對小文件產(chǎn)生隨機讀帶來的開銷。
看完了這篇文章,相信你對“Hadoop中MapTask如何實現(xiàn)”有了一定的了解,如果想了解更多相關知識,歡迎關注創(chuàng)新互聯(lián)行業(yè)資訊頻道,感謝各位的閱讀!