真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

TensorFlow中怎么搭建JupyterLab環(huán)境

TensorFlow中怎么搭建JupyterLab 環(huán)境,針對這個問題,這篇文章詳細(xì)介紹了相對應(yīng)的分析和解答,希望可以幫助更多想解決這個問題的小伙伴找到更簡單易行的方法。

創(chuàng)新互聯(lián)建站是專業(yè)的盂縣網(wǎng)站建設(shè)公司,盂縣接單;提供成都做網(wǎng)站、成都網(wǎng)站制作,網(wǎng)頁設(shè)計,網(wǎng)站設(shè)計,建網(wǎng)站,PHP網(wǎng)站建設(shè)等專業(yè)做網(wǎng)站服務(wù);采用PHP框架,可快速的進(jìn)行盂縣網(wǎng)站開發(fā)網(wǎng)頁制作和功能擴展;專業(yè)做搜索引擎喜愛的網(wǎng)站,專業(yè)的做網(wǎng)站團隊,希望更多企業(yè)前來合作!

Ubuntu

  • Ubuntu 18.04.5 LTS (Bionic Beaver)

    • ubuntu-18.04.5-desktop-amd64.iso

CUDA

  • CUDA 11.2.2

    • cuda_11.2.2_460.32.03_linux.run

  • cuDNN 8.1.1

    • libcudnn8_8.1.1.33-1+cuda11.2_amd64.deb

    • libcudnn8-dev_8.1.1.33-1+cuda11.2_amd64.deb

    • libcudnn8-samples_8.1.1.33-1+cuda11.2_amd64.deb

Anaconda

  • Anaconda Python 3.8

    • Anaconda3-2020.11-Linux-x86_64.sh

conda activate base

安裝 JupyterLab

Anaconda 環(huán)境里已有,如下查看版本:

jupyter --version

不然,如下進(jìn)行安裝:

conda install -c conda-forge jupyterlab

安裝 TensorFlow

創(chuàng)建虛擬環(huán)境 tf,再 pip 安裝 TensorFlow:

# create virtual environment
conda create -n tf python=3.8 -y
conda activate tf

# install tensorflow
pip install --upgrade pip
pip install tensorflow

測試:

$ python - <
2021-04-01 11:18:17.719061: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2.4.1 True
2021-04-01 11:18:18.437590: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set
2021-04-01 11:18:18.437998: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcuda.so.1
2021-04-01 11:18:18.458471: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-01 11:18:18.458996: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce RTX 2060 computeCapability: 7.5
coreClock: 1.35GHz coreCount: 30 deviceMemorySize: 5.79GiB deviceMemoryBandwidth: 245.91GiB/s
2021-04-01 11:18:18.459034: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2021-04-01 11:18:18.461332: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11
2021-04-01 11:18:18.461362: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11
2021-04-01 11:18:18.462072: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10
2021-04-01 11:18:18.462200: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10
2021-04-01 11:18:18.462745: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10
2021-04-01 11:18:18.463241: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.11
2021-04-01 11:18:18.463353: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8
2021-04-01 11:18:18.463415: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-01 11:18:18.463854: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-01 11:18:18.464170: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

Solution: Could not load dynamic library 'libcusolver.so.10'

cd /usr/local/cuda/lib64
sudo ln -sf libcusolver.so.11 libcusolver.so.10

安裝 IPython kernel

在虛擬環(huán)境 tf 里,安裝 ipykernel 與 Jupyter 交互。

# install ipykernel (conda new environment)
conda activate tf
conda install ipykernel -y
python -m ipykernel install --user --name tf --display-name "Python TF"

# run JupyterLab (conda base environment with JupyterLab)
conda activate base
jupyter lab

另一種方式,可用 nb_conda 擴展,其于筆記里會激活 Conda 環(huán)境:

# install ipykernel (conda new environment)
conda activate tf
conda install ipykernel -y

# install nb_conda (conda base environment with JupyterLab)
conda activate base
conda install nb_conda -y
# run JupyterLab
jupyter lab

最后,訪問 http://localhost:8888/ :

TensorFlow中怎么搭建JupyterLab 環(huán)境

關(guān)于TensorFlow中怎么搭建JupyterLab 環(huán)境問題的解答就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,如果你還有很多疑惑沒有解開,可以關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道了解更多相關(guān)知識。


新聞名稱:TensorFlow中怎么搭建JupyterLab環(huán)境
當(dāng)前路徑:http://weahome.cn/article/pohsod.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部