真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ)|初識Pandas

這段時間和一些做數(shù)據(jù)分析的同學(xué)閑聊,我發(fā)現(xiàn)數(shù)據(jù)分析技能入門階段存在一個普遍性的問題,很多憑著興趣入坑的同學(xué),都能夠很快熟悉Python基礎(chǔ)語法,好像自己什么都會了一點,然而實際操作起來既不知從何操起,又漏洞百出。

成都地區(qū)優(yōu)秀IDC服務(wù)器托管提供商(創(chuàng)新互聯(lián)公司).為客戶提供專業(yè)的成都移動機房托管,四川各地服務(wù)器托管,成都移動機房托管、多線服務(wù)器托管.托管咨詢專線:18982081108

至于原因嘛, 理解不夠,實踐不夠是兩條老牌的攔路虎,只能靠自己來克服。還有一個非常有意思且經(jīng)常被忽視的因素—— 陷入舉三反一的懵逼狀態(tài)。

什么意思呢?假如我是個旱鴨子,想去學(xué)游泳,教練很認真的給我剖析了蛙泳的動作,扶著我的腰讓我在水里劃拉了5分鐘,接著馬上給我講解了蝶泳,又是劃拉了5分鐘,然后又硬塞給我潛泳的姿勢,依然是劃拉5分鐘。最后,教練一下子把我丟進踩不到底的泳池,給我吶喊助威。

作為一個還沒入門的旱鴨子,教練傾囊授了我3種游泳技巧,讓我分別實踐了5分鐘。這樣做的結(jié)果就是我哪一種游泳技巧也沒學(xué)會,只學(xué)會了喝水。 當(dāng)一個初學(xué)者一開始就陷入針對單個問題的多種解決方法,而每一種方法的實踐又淺嘗輒止,在面對具體問題時往往會手忙腳亂。

拿Pandas來說,它的多種構(gòu)造方式,多種索引方式以及類似效果的多種實現(xiàn)方法,很容易把初學(xué)者打入舉三反一的懵逼狀態(tài)。所以,盡量避開這個坑也是我寫Pandas基礎(chǔ)系列的初衷,希望通過梳理和精簡知識點的方式,給需要的同學(xué)一些啟發(fā)。目前暫定整個基礎(chǔ)系列分為4篇,基礎(chǔ)篇過后便是有趣的實戰(zhàn)篇。

下面開始進入正題(我真是太嘮叨了)。

Pandas簡介

江湖上流傳著這么一句話——分析不識潘大師(PANDAS),縱是老手也枉然。

Pandas是基于Numpy的專業(yè)數(shù)據(jù)分析工具,可以靈活高效的處理各種數(shù)據(jù)集,也是我們后期分析案例的神器。它提供了兩種類型的數(shù)據(jù)結(jié)構(gòu),分別是DataFrame和Series,我們可以簡單粗暴的把DataFrame理解為Excel里面的一張表,而Series就是表中的某一列,后面學(xué)習(xí)和用到的所有Pandas騷操作,都是基于這些表和列進行的操作(關(guān)于Pandas和Excel的形象關(guān)系,這里推薦我的好朋友張俊紅寫的《對比EXCEL,輕松學(xué)習(xí)Python數(shù)據(jù)分析》)。

這里有一點需要強調(diào),Pandas和Excel、SQL相比,只是調(diào)用和處理數(shù)據(jù)的方式變了, 核心都是對源數(shù)據(jù)進行一系列的處理,在正式處理之前,更重要的是 謀定而后動,明確分析的意義,理清分析思路之后再處理和分析數(shù)據(jù),往往事半功倍。

創(chuàng)建、讀取和存儲

1、創(chuàng)建

在Pandas中我們想要構(gòu)造下面這一張表應(yīng)該如何操作呢?

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

別忘了,第一步一定是先導(dǎo)入我們的庫——import pandas as pd

構(gòu)造DataFrame最常用的方式是字典+列表,語句很簡單,先是字典外括,然后依次打出每一列標(biāo)題及其對應(yīng)的列值(此處一定要用列表),這里列的順序并不重要:

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

左邊是jupyter notebook中dataframe的樣子,如果對應(yīng)到excel中,他就是右邊表格的樣子,通過改變columns,index和values的值來控制數(shù)據(jù)。

PS,如果我們在創(chuàng)建時不指定index,系統(tǒng)會自動生成從0開始的索引。

2、 讀取

更多時候,我們是把相關(guān)文件數(shù)據(jù)直接讀進PANDAS中進行操作,這里介紹兩種非常接近的讀取方式,一種是CSV格式的文件,一種是EXCEL格式(.xlsx和xls后綴)的文件。

讀取csv文件:

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

engine是使用的分析引擎,讀取csv文件一般指定python避免中文和編碼造成的報錯。而讀取Excel文件,則是一樣的味道:

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

非常easy,其實read_csv和read_excel還有一些參數(shù),比如header、sep、names等,大家可以做額外了解。實踐中數(shù)據(jù)源的格式一般都是比較規(guī)整的,更多情況是直接讀取。

3、存儲

存儲起來一樣非常簡單粗暴且相似:

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

快速認識數(shù)據(jù)

這里以我們的案例數(shù)據(jù)為例,迅速熟悉查看N行,數(shù)據(jù)格式概覽以及基礎(chǔ)統(tǒng)計數(shù)據(jù)。

1、查看數(shù)據(jù),掐頭看尾

很多時候我們想要對數(shù)據(jù)內(nèi)容做一個總覽,用df.head()函數(shù)直接可以查看默認的前5行,與之對應(yīng),df.tail()就可以查看數(shù)據(jù)尾部的5行數(shù)據(jù),這兩個參數(shù)內(nèi)可以傳入一個數(shù)值來控制查看的行數(shù),例如df.head(10)表示查看前10行數(shù)據(jù)。

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

2、 格式查看

df.info()幫助我們一步摸清各列數(shù)據(jù)的類型,以及缺失情況:

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

從上面直接可以知道數(shù)據(jù)集的行列數(shù),數(shù)據(jù)集的大小,每一列的數(shù)據(jù)類型,以及有多少條非空數(shù)據(jù)。

3、統(tǒng)計信息概覽

快速計算數(shù)值型數(shù)據(jù)的關(guān)鍵統(tǒng)計指標(biāo),像平均數(shù)、中位數(shù)、標(biāo)準(zhǔn)差等等。

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

我們本來有5列數(shù)據(jù),為什么返回結(jié)果只有兩列?那是因為這個操作只針對數(shù)值型的列。其中count是統(tǒng)計每一列的有多少個非空數(shù)值,mean、std、min、max對應(yīng)的分別是該列的均值、標(biāo)準(zhǔn)差、最小值和最大值,25%、50%、75%對應(yīng)的則是分位數(shù)。

列的基本處理方式

這里,我們采用SQL四大寶的邏輯來簡單梳理針對列的基本處理方式—— 增、刪、選、改。

溫馨提示:使用Pandas時,盡量避免用行或者EXCEL操作單元格的思維來處理數(shù)據(jù),要逐漸養(yǎng)成一種列向思維,每一列是同宗同源,處理起來是嗖嗖的快。

1、增

增加一列,用df['新列名'] = 新列值的形式,在原數(shù)據(jù)基礎(chǔ)上賦值即可:

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

2、刪:

我們用drop函數(shù)制定刪除對應(yīng)的列,axis = 1表示針對列的操作,inplace為True,則直接在源數(shù)據(jù)上進行修改,否則源數(shù)據(jù)會保持原樣。

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

3、選:

想要選取某一列怎么辦?df['列名']即可:

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

選取多列呢?需要用列表來傳遞:df[['第一列','第二列','第三列'..]]

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

4、 改:

好事多磨,復(fù)雜的針對特定條件和行列的篩選、修改,放在后面結(jié)合案例細講,這里只講一下最簡單的更改:df['舊列名'] = 某個值或者某列值,就完成了對原列數(shù)值的修改。

常用數(shù)據(jù)類型及操作

1、字符串

字符串類型是最常用的格式之一了,Pandas中字符串的操作和原生字符串操作幾乎一毛一樣,唯一不同的是需要在操作前加上".str"。

小Z溫馨提示:我們最初用df2.info()查看數(shù)據(jù)類型時,非數(shù)值型的列都返回的是object格式,和str類型深層機制上的區(qū)別就不展開了,在常規(guī)實際應(yīng)用中,我們可以先理解為object對應(yīng)的就是str格式,int64對應(yīng)的就是int格式,float64對應(yīng)的就是float格式即可。

在案例數(shù)據(jù)中,我們發(fā)現(xiàn)來源明細那一列,可能是系統(tǒng)導(dǎo)出的歷史遺留問題,每一個字符串前面都有一個“-”符號,又丑又無用,所以把他給拿掉:

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

一般來說清洗之后的列是要替換掉原來列的:

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

2、 數(shù)值型

數(shù)值型數(shù)據(jù),常見的操作是計算,分為與單個值的運算,長度相等列的運算。

以案例數(shù)據(jù)為例,源數(shù)據(jù)訪客數(shù)我們是知道的,現(xiàn)在想把所有渠道的訪客都加上10000,怎么操作呢?

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

只需要選中訪客數(shù)所在列,然后加上10000即可,pandas自動將10000和每一行數(shù)值相加,針對單個值的其他運算(減乘除)也是如此。

列之間的運算語句也非常簡潔。源數(shù)據(jù)是包含了訪客數(shù)、轉(zhuǎn)化率和客單價,而實際工作中我們對每個渠道貢獻的銷售額更感興趣。(銷售額 = 訪客數(shù) X 轉(zhuǎn)化率 X 客單價)

對應(yīng)操作語句:df['銷售額'] = df['訪客數(shù)'] * df['轉(zhuǎn)化率'] * df['客單價']

但為什么瘋狂報錯?

導(dǎo)致報錯的原因,是數(shù)值型數(shù)據(jù)和非數(shù)值型數(shù)據(jù)相互計算導(dǎo)致的。PANDAS把帶“%”符號的轉(zhuǎn)化率識別成字符串類型,我們需要先拿掉百分號,再將這一列轉(zhuǎn)化為浮點型數(shù)據(jù):

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

要注意的是,這樣操作,把9.98%變成了9.98,所以我們還需要讓支付轉(zhuǎn)化率除以100,來還原百分數(shù)的真實數(shù)值:

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

然后,再用三個指標(biāo)相乘計算銷售額:

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

3、時間類型

PANDAS中時間序列相關(guān)的水非常深,這里只對日常中最基礎(chǔ)的時間格式進行講解,對時間序列感興趣的同學(xué)可以自行查閱相關(guān)資料,深入了解。

以案例數(shù)據(jù)為例,我們這些渠道數(shù)據(jù),是在2019年8月2日提取的,后面可能涉及到其他日期的渠道數(shù)據(jù),所以需要加一列時間予以區(qū)分,在EXCEL中常用的時間格式是'2019-8-3'或者'2019/8/3',我們用PANDAS來實現(xiàn)一下:

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

在實際業(yè)務(wù)中,一些時候PANDAS會把文件中日期格式的字段讀取為字符串格式,這里我們先把字符串'2019-8-3'賦值給新增的日期列,然后用to_datetime()函數(shù)將字符串類型轉(zhuǎn)換成時間格式:

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

轉(zhuǎn)換成時間格式(這里是datetime64)之后,我們可以用處理時間的思路高效處理這些數(shù)據(jù),比如,我現(xiàn)在想知道提取數(shù)據(jù)這一天離年末還有多少天('2019-12-31'),直接做減法(該函數(shù)接受時間格式的字符串序列,也接受單個字符串):

Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ) | 初識Pandas

是不是非常簡單?


網(wǎng)站標(biāo)題:Python學(xué)習(xí)教程:Python數(shù)據(jù)分析實戰(zhàn)基礎(chǔ)|初識Pandas
當(dāng)前地址:http://weahome.cn/article/pojoos.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部