這篇文章主要介紹“Hive和普通關(guān)系數(shù)據(jù)庫有什么區(qū)別”,在日常操作中,相信很多人在Hive和普通關(guān)系數(shù)據(jù)庫有什么區(qū)別問題上存在疑惑,小編查閱了各式資料,整理出簡單好用的操作方法,希望對大家解答”Hive和普通關(guān)系數(shù)據(jù)庫有什么區(qū)別”的疑惑有所幫助!接下來,請跟著小編一起來學(xué)習(xí)吧!
為芙蓉等地區(qū)用戶提供了全套網(wǎng)頁設(shè)計制作服務(wù),及芙蓉網(wǎng)站建設(shè)行業(yè)解決方案。主營業(yè)務(wù)為成都做網(wǎng)站、成都網(wǎng)站建設(shè)、成都外貿(mào)網(wǎng)站建設(shè)、芙蓉網(wǎng)站設(shè)計,以傳統(tǒng)方式定制建設(shè)網(wǎng)站,并提供域名空間備案等一條龍服務(wù),秉承以專業(yè)、用心的態(tài)度為用戶提供真誠的服務(wù)。我們深信只要達(dá)到每一位用戶的要求,就會得到認(rèn)可,從而選擇與我們長期合作。這樣,我們也可以走得更遠(yuǎn)!
查詢語言。由于 SQL 被廣泛的應(yīng)用在數(shù)據(jù)倉庫中,因此,專門針對 Hive 的特性設(shè)計了類 SQL 的查詢語言 HQL。熟悉 SQL 開發(fā)的開發(fā)者可以很方便的使用 Hive 進(jìn)行開發(fā)。
數(shù)據(jù)存儲位置。Hive 是建立在 Hadoop 之上的,所有 Hive 的數(shù)據(jù)都是存儲在 HDFS 中的。而數(shù)據(jù)庫則可以將數(shù)據(jù)保存在塊設(shè)備或者本地文件系統(tǒng)中。
數(shù)據(jù)格式。Hive 中沒有定義專門的數(shù)據(jù)格式,數(shù)據(jù)格式可以由用戶指定,用戶定義數(shù)據(jù)格式需要指定三個屬性:列分隔符(通常為空格、”\t”、”\x001″)、行分隔符(”\n”)以及讀取文件數(shù)據(jù)的方法(Hive 中默認(rèn)有三個文件格式 TextFile,SequenceFile 以及 RCFile由于在加載數(shù)據(jù)的過程中,不需要從用戶數(shù)據(jù)格式到 Hive 定義的數(shù)據(jù)格式的轉(zhuǎn)換,因此,Hive 在加載的過程中不會對數(shù)據(jù)本身進(jìn)行任何修改,而只是將數(shù)據(jù)內(nèi)容復(fù)制或者移動到相應(yīng)的 HDFS 目錄中。而在數(shù)據(jù)庫中,不同的數(shù)據(jù)庫有不同的存儲引擎,定義了自己的數(shù)據(jù)格式。所有數(shù)據(jù)都會按照一定的組織存儲,因此,數(shù)據(jù)庫加載數(shù)據(jù)的過程會比較耗時。
數(shù)據(jù)更新。由于 Hive 是針對數(shù)據(jù)倉庫應(yīng)用設(shè)計的,而數(shù)據(jù)倉庫的內(nèi)容是讀多寫少的。因此,Hive 中不支持對數(shù)據(jù)的改寫和添加,所有的數(shù)據(jù)都是在加載的時候中確定好的。而數(shù)據(jù)庫中的數(shù)據(jù)通常是需要經(jīng)常進(jìn)行修改的,因此可以使用 INSERT INTO ... VALUES 添加數(shù)據(jù),使用 UPDATE ... SET 修改數(shù)據(jù)。
索引。之前已經(jīng)說過,Hive 在加載數(shù)據(jù)的過程中不會對數(shù)據(jù)進(jìn)行任何處理,甚至不會對數(shù)據(jù)進(jìn)行掃描,因此也沒有對數(shù)據(jù)中的某些 Key 建立索引。Hive 要訪問數(shù)據(jù)中滿足條件的特定值時,需要暴力掃描整個數(shù)據(jù),因此訪問延遲較高。由于 MapReduce 的引入, Hive 可以并行訪問數(shù)據(jù),因此即使沒有索引,對于大數(shù)據(jù)量的訪問,Hive 仍然可以體現(xiàn)出優(yōu)勢。數(shù)據(jù)庫中,通常會針對一個或者幾個列建立索引,因此對于少量的特定條件的數(shù)據(jù)的訪問,數(shù)據(jù)庫可以有很高的效率,較低的延遲。由于數(shù)據(jù)的訪問延遲較高,決定了 Hive 不適合在線數(shù)據(jù)查詢。
執(zhí)行。Hive 中大多數(shù)查詢的執(zhí)行是通過 Hadoop 提供的 MapReduce 來實現(xiàn)的(類似 select * from tbl 的查詢不需要 MapReduce)。而數(shù)據(jù)庫通常有自己的執(zhí)行引擎。
執(zhí)行延遲。之前提到,Hive 在查詢數(shù)據(jù)的時候,由于沒有索引,需要掃描整個表,因此延遲較高。另外一個導(dǎo)致 Hive 執(zhí)行延遲高的因素是 MapReduce 框架。由于 MapReduce 本身具有較高的延遲,因此在利用 MapReduce 執(zhí)行 Hive 查詢時,也會有較高的延遲。相對的,數(shù)據(jù)庫的執(zhí)行延遲較低。當(dāng)然,這個低是有條件的,即數(shù)據(jù)規(guī)模較小,當(dāng)數(shù)據(jù)規(guī)模大到超過數(shù)據(jù)庫的處理能力的時候,Hive 的并行計算顯然能體現(xiàn)出優(yōu)勢。
可擴展性。由于 Hive 是建立在 Hadoop 之上的,因此 Hive 的可擴展性是和 Hadoop 的可擴展性是一致的(世界上最大的 Hadoop 集群在 Yahoo!,2009年的規(guī)模在 4000 臺節(jié)點左右)。而數(shù)據(jù)庫由于 ACID 語義的嚴(yán)格限制,擴展行非常有限。目前最先進(jìn)的并行數(shù)據(jù)庫 Oracle 在理論上的擴展能力也只有 100 臺左右。
數(shù)據(jù)規(guī)模。由于 Hive 建立在集群上并可以利用 MapReduce 進(jìn)行并行計算,因此可以支持很大規(guī)模的數(shù)據(jù);對應(yīng)的,數(shù)據(jù)庫可以支持的數(shù)據(jù)規(guī)模較小。
到此,關(guān)于“Hive和普通關(guān)系數(shù)據(jù)庫有什么區(qū)別”的學(xué)習(xí)就結(jié)束了,希望能夠解決大家的疑惑。理論與實踐的搭配能更好的幫助大家學(xué)習(xí),快去試試吧!若想繼續(xù)學(xué)習(xí)更多相關(guān)知識,請繼續(xù)關(guān)注創(chuàng)新互聯(lián)網(wǎng)站,小編會繼續(xù)努力為大家?guī)砀鄬嵱玫奈恼拢?/p>
分享標(biāo)題:Hive和普通關(guān)系數(shù)據(jù)庫有什么區(qū)別
路徑分享:http://weahome.cn/article/ppcsho.html