本篇文章給大家分享的是有關深度學習中的batch大小對學習效果有何影響,小編覺得挺實用的,因此分享給大家學習,希望大家閱讀完這篇文章后可以有所收獲,話不多說,跟著小編一起來看看吧。
專注于為中小企業(yè)提供成都網(wǎng)站設計、成都網(wǎng)站制作服務,電腦端+手機端+微信端的三站合一,更高效的管理,為中小企業(yè)新區(qū)免費做網(wǎng)站提供優(yōu)質的服務。我們立足成都,凝聚了一批互聯(lián)網(wǎng)行業(yè)人才,有力地推動了千余家企業(yè)的穩(wěn)健成長,幫助中小企業(yè)通過網(wǎng)站建設實現(xiàn)規(guī)模擴充和轉變。
談談深度學習中的Batch_Size
Batch_Size(批尺寸)是機器學習中一個重要參數(shù),涉及諸多矛盾,下面逐一展開。
首先,為什么需要有 Batch_Size 這個參數(shù)?
Batch 的選擇,首先決定的是下降的方向。如果數(shù)據(jù)集比較小,完全可以采用全數(shù)據(jù)集 ( Full Batch Learning )的形式,這樣做至少有 2 個好處:其一,由全數(shù)據(jù)集確定的方向能夠更好地代表樣本總體,從而更準確地朝向極值所在的方向。其二,由于不同權重的梯度值差別巨大,因此選取一個全局的學習率很困難。 Full Batch Learning 可以使用Rprop只基于梯度符號并且針對性單獨更新各權值。
對于更大的數(shù)據(jù)集,以上 2 個好處又變成了 2 個壞處:其一,隨著數(shù)據(jù)集的海量增長和內(nèi)存限制,一次性載入所有的數(shù)據(jù)進來變得越來越不可行。其二,以 Rprop 的方式迭代,會由于各個 Batch 之間的采樣差異性,各次梯度修正值相互抵消,無法修正。這才有了后來 RMSProp的妥協(xié)方案。
既然 Full Batch Learning 并不適用大數(shù)據(jù)集,那么走向另一個極端怎么樣?
所謂另一個極端,就是每次只訓練一個樣本,即 Batch_Size = 1。這就是在線學習(Online Learning)。線性神經(jīng)元在均方誤差代價函數(shù)的錯誤面是一個拋物面,橫截面是橢圓。對于多層神經(jīng)元、非線性網(wǎng)絡,在局部依然近似是拋物面。使用在線學習,每次修正方向以各自樣本的梯度方向修正,橫沖直撞各自為政,難以達到收斂。
可不可以選擇一個適中的 Batch_Size 值呢?
當然可以,這就是批梯度下降法(Mini-batches Learning)。因為如果數(shù)據(jù)集足夠充分,那么用一半(甚至少得多)的數(shù)據(jù)訓練算出來的梯度與用全部數(shù)據(jù)訓練出來的梯度是幾乎一樣的。
在合理范圍內(nèi),增大 Batch_Size 有何好處?
盲目增大 Batch_Size 有何壞處?
調節(jié) Batch_Size 對訓練效果影響到底如何?
這里跑一個 LeNet 在 MNIST 數(shù)據(jù)集上的效果。MNIST 是一個手寫體標準庫,我使用的是 Theano 框架。這是一個 Python 的深度學習庫。安裝方便(幾行命令而已),調試簡單(自帶 Profile),GPU / CPU 通吃,官方教程相當完備,支持模塊十分豐富Profile),GPU / CPU 通吃,官方教程相當完備,支持模塊十分豐富(除了 CNNs,更是支持 RBM / DBN / LSTM / RBM-RNN / SdA / MLPs)。在其上層有 Keras 封裝,支持 GRU / JZS1, JZS2, JZS3 等較新結構,支持 Adagrad / Adadelta / RMSprop / Adam 等優(yōu)化算法。
運行結果如上圖所示,其中絕對時間做了標幺化處理。運行結果與上文分析相印證:
以上就是深度學習中的batch大小對學習效果有何影響,小編相信有部分知識點可能是我們?nèi)粘9ぷ鲿姷交蛴玫降?。希望你能通過這篇文章學到更多知識。更多詳情敬請關注創(chuàng)新互聯(lián)行業(yè)資訊頻道。