互聯(lián)網(wǎng)IDC圈2月16日報(bào)道:在寫這篇文章之前,我發(fā)現(xiàn)身邊很多IT人對(duì)于這些熱門的新技術(shù)、新趨勢往往趨之若鶩卻又很難說的透徹,如果你問他大數(shù)據(jù)和你有什么關(guān)系?估計(jì)很少能說出一二三來。究其原因,一是因?yàn)榇蠹覍?duì)新技術(shù)有著相同的原始渴求,至少知其然在聊天時(shí)不會(huì)顯得很“土鱉”;二是在工作和生活環(huán)境中真正能參與實(shí)踐大數(shù)據(jù)的案例實(shí)在太少了,所以大家沒有必要花時(shí)間去知其所以然。
施秉ssl適用于網(wǎng)站、小程序/APP、API接口等需要進(jìn)行數(shù)據(jù)傳輸應(yīng)用場景,ssl證書未來市場廣闊!成為成都創(chuàng)新互聯(lián)的ssl證書銷售渠道,可以享受市場價(jià)格4-6折優(yōu)惠!如果有意向歡迎電話聯(lián)系或者加微信:13518219792(備注:SSL證書合作)期待與您的合作!我希望有些不一樣,所以對(duì)該如何去認(rèn)識(shí)大數(shù)據(jù)進(jìn)行了一番思索,包括查閱了資料,翻閱了最新的專業(yè)書籍,但我并不想把那些零散的資料碎片或不同理解論述簡單規(guī)整并堆積起來形成毫無價(jià)值的轉(zhuǎn)述或評(píng)論,我很真誠的希望進(jìn)入事物探尋本質(zhì)。
如果你說大數(shù)據(jù)就是數(shù)據(jù)大,或者侃侃而談4個(gè)V,也許很有深度的談到BI或預(yù)測的價(jià)值,又或者拿Google和Amazon舉例,技術(shù)流可能會(huì)聊起Hadoop和Cloud Computing,不管對(duì)錯(cuò),只是無法勾勒對(duì)大數(shù)據(jù)的整體認(rèn)識(shí),不說是片面,但至少有些管窺蠡測、隔衣瘙癢了。……也許,“解構(gòu)”是最好的方法。
怎樣解構(gòu)大數(shù)據(jù)?
首先,我認(rèn)為大數(shù)據(jù)就是互聯(lián)網(wǎng)發(fā)展到現(xiàn)今階段的一種表象或特征而已,沒有必要神話它或?qū)λ3志次分?,在以云?jì)算為代表的技術(shù)創(chuàng)新大幕的襯托下,這些原本很難收集和使用的數(shù)據(jù)開始容易被利用起來了,通過各行各業(yè)的不斷創(chuàng)新,大數(shù)據(jù)會(huì)逐步為人類創(chuàng)造更多的價(jià)值。
其次,想要系統(tǒng)的認(rèn)知大數(shù)據(jù),必須要全面而細(xì)致的分解它,我著手從三個(gè)層面來展開:
第一層面是理論,理論是認(rèn)知的必經(jīng)途徑,也是被廣泛認(rèn)同和傳播的基線。我會(huì)從大數(shù)據(jù)的特征定義理解行業(yè)對(duì)大數(shù)據(jù)的整體描繪和定性;從對(duì)大數(shù)據(jù)價(jià)值的探討來深入解析大數(shù)據(jù)的珍貴所在;從對(duì)大數(shù)據(jù)的現(xiàn)在和未來去洞悉大數(shù)據(jù)的發(fā)展趨勢;從大數(shù)據(jù)隱私這個(gè)特別而重要的視角審視人和數(shù)據(jù)之間的長久博弈。
第二層面是技術(shù),技術(shù)是大數(shù)據(jù)價(jià)值體現(xiàn)的手段和前進(jìn)的基石。我將分別從云計(jì)算、分布式處理技術(shù)、存儲(chǔ)技術(shù)和感知技術(shù)的發(fā)展來說明大數(shù)據(jù)從采集、處理、存儲(chǔ)到形成結(jié)果的整個(gè)過程。
第三層面是實(shí)踐,實(shí)踐是大數(shù)據(jù)的最終價(jià)值體現(xiàn)。我將分別從互聯(lián)網(wǎng)的大數(shù)據(jù),政府的大數(shù)據(jù),企業(yè)的大數(shù)據(jù)和個(gè)人的大數(shù)據(jù)四個(gè)方面來描繪大數(shù)據(jù)已經(jīng)展現(xiàn)的美好景象及即將實(shí)現(xiàn)的藍(lán)圖。
和大數(shù)據(jù)相關(guān)的理論
特征定義
最早提出大數(shù)據(jù)時(shí)代到來的是麥肯錫:“數(shù)據(jù),已經(jīng)滲透到當(dāng)今每一個(gè)行業(yè)和業(yè)務(wù)職能領(lǐng)域,成為重要的生產(chǎn)因素。人們對(duì)于海量數(shù)據(jù)的挖掘和運(yùn)用,預(yù)示著新一波生產(chǎn)率增長和消費(fèi)者盈余浪潮的到來。”
業(yè)界(IBM 最早定義)將大數(shù)據(jù)的特征歸納為4個(gè)“V”(量Volume,多樣Variety,價(jià)值Value,速Velocity),或者說特點(diǎn)有四個(gè)層面:
第一,數(shù)據(jù)體量巨大。大數(shù)據(jù)的起始計(jì)量單位至少是P(1000個(gè)T)、E(100萬個(gè)T)或Z(10億個(gè)T);
第二,數(shù)據(jù)類型繁多。比如,網(wǎng)絡(luò)日志、視頻、圖片、地理位置信息等等。
第三,價(jià)值密度低,商業(yè)價(jià)值高。
第四,處理速度快。最后這一點(diǎn)也是和傳統(tǒng)的數(shù)據(jù)挖掘技術(shù)有著本質(zhì)的不同。
其實(shí)這些V并不能真正說清楚大數(shù)據(jù)的所有特征,下面這張圖對(duì)大數(shù)據(jù)的一些相關(guān)特性做出了有效的說明。
古語云:三分技術(shù),七分?jǐn)?shù)據(jù),得數(shù)據(jù)者得天下。先不論誰說的,但是這句話的正確性已經(jīng)不用去論證了。維克托·邁爾-舍恩伯格在《大數(shù)據(jù)時(shí)代》一書中舉了百般例證,都是為了說明一個(gè)道理:在大數(shù)據(jù)時(shí)代已經(jīng)到來的時(shí)候要用大數(shù)據(jù)思維去發(fā)掘大數(shù)據(jù)的潛在價(jià)值。書中,作者提及最多的是Google如何利用人們的搜索記錄挖掘數(shù)據(jù)二次利用價(jià)值,比如預(yù)測某地流感爆發(fā)的趨勢;Amazon如何利用用戶的購買和瀏覽歷史數(shù)據(jù)進(jìn)行有針對(duì)性的書籍購買推薦,以此有效提升銷售量;Farecast如何利用過去十年所有的航線機(jī)票價(jià)格打折數(shù)據(jù),來預(yù)測用戶購買機(jī)票的時(shí)機(jī)是否合適。
那么,什么是大數(shù)據(jù)思維?維克托·邁爾-舍恩伯格認(rèn)為,
需要全部數(shù)據(jù)樣本而不是抽樣;
關(guān)注效率而不是精確度;
關(guān)注相關(guān)性而不是因果關(guān)系。
阿里巴巴的王堅(jiān)對(duì)于大數(shù)據(jù)也有一些獨(dú)特的見解,比如,
“今天的數(shù)據(jù)不是大,真正有意思的是數(shù)據(jù)變得在線了,這個(gè)恰恰是互聯(lián)網(wǎng)的特點(diǎn)。”
“非互聯(lián)網(wǎng)時(shí)期的產(chǎn)品,功能一定是它的價(jià)值,今天互聯(lián)網(wǎng)的產(chǎn)品,數(shù)據(jù)一定是它的價(jià)值。”
“你千萬不要想著拿數(shù)據(jù)去改進(jìn)一個(gè)業(yè)務(wù),這不是大數(shù)據(jù)。你一定是去做了一件以前做不了的事情。”
特別是最后一點(diǎn),我是非常認(rèn)同的,大數(shù)據(jù)的真正價(jià)值在于創(chuàng)造,在于填補(bǔ)無數(shù)個(gè)還未實(shí)現(xiàn)過的空白。
有人把數(shù)據(jù)比喻為蘊(yùn)藏能量的煤礦。煤炭按照性質(zhì)有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數(shù)據(jù)并不在“大”,而在于“有用”.價(jià)值含量、挖掘成本比數(shù)量更為重要。
價(jià)值探討
大數(shù)據(jù)是什么?投資者眼里是金光閃閃的兩個(gè)字:資產(chǎn)。比如,F(xiàn)acebook上市時(shí),評(píng)估機(jī)構(gòu)評(píng)定的有效資產(chǎn)中大部分都是其社交網(wǎng)站上的數(shù)據(jù)。
如果把大數(shù)據(jù)比作一種產(chǎn)業(yè),那么這種產(chǎn)業(yè)實(shí)現(xiàn)盈利的關(guān)鍵,在于提高對(duì)數(shù)據(jù)的“加工能力”,通過“加工”實(shí)現(xiàn)數(shù)據(jù)的“增值”.
Target 超市以20多種懷孕期間孕婦可能會(huì)購買的商品為基礎(chǔ),將所有用戶的購買記錄作為數(shù)據(jù)來源,通過構(gòu)建模型分析購買者的行為相關(guān)性,能準(zhǔn)確的推斷出孕婦的具體臨盆時(shí)間,這樣Target的銷售部門就可以有針對(duì)的在每個(gè)懷孕顧客的不同階段寄送相應(yīng)的產(chǎn)品優(yōu)惠卷。
Target的例子是一個(gè)很典型的案例,這樣印證了維克托·邁爾-舍恩伯格提過的一個(gè)很有指導(dǎo)意義的觀點(diǎn):通過找出一個(gè)關(guān)聯(lián)物并監(jiān)控它,就可以預(yù)測未來。Target通過監(jiān)測購買者購買商品的時(shí)間和品種來準(zhǔn)確預(yù)測顧客的孕期,這就是對(duì)數(shù)據(jù)的二次利用的典型案例。如果,我們通過采集駕駛員手機(jī)的GPS數(shù)據(jù),就可以分析出當(dāng)前哪些道路正在堵車,并可以及時(shí)發(fā)布道路交通提醒;通過采集汽車的GPS位置數(shù)據(jù),就可以分析城市的哪些區(qū)域停車較多,這也代表該區(qū)域有著較為活躍的人群,這些分析數(shù)據(jù)適合賣給廣告投放商。
不管大數(shù)據(jù)的核心價(jià)值是不是預(yù)測,但是基于大數(shù)據(jù)形成決策的模式已經(jīng)為不少的企業(yè)帶來了盈利和聲譽(yù)。
從大數(shù)據(jù)的價(jià)值鏈條來分析,存在三種模式:
手握大數(shù)據(jù),但是沒有利用好;比較典型的是金融機(jī)構(gòu),電信行業(yè),政府機(jī)構(gòu)等。
沒有數(shù)據(jù),但是知道如何幫助有數(shù)據(jù)的人利用它;比較典型的是IT咨詢和服務(wù)企業(yè),比如,埃森哲,IBM,Oracle等。
既有數(shù)據(jù),又有大數(shù)據(jù)思維;比較典型的是Google,Amazon,Mastercard等。
未來在大數(shù)據(jù)領(lǐng)域最具有價(jià)值的是兩種事物:
擁有大數(shù)據(jù)思維的人,這種人可以將大數(shù)據(jù)的潛在價(jià)值轉(zhuǎn)化為實(shí)際利益;
還未有被大數(shù)據(jù)觸及過的業(yè)務(wù)領(lǐng)域。這些是還未被挖掘的油井,金礦,是所謂的藍(lán)海。
Wal-Mart作為零售行業(yè)的巨頭,他們的分析人員會(huì)對(duì)每個(gè)階段的銷售記錄進(jìn)行了全面的分析,有一次他們無意中發(fā)現(xiàn)雖不相關(guān)但很有價(jià)值的數(shù)據(jù),在美國的颶風(fēng)來臨季節(jié),超市的蛋撻和抵御颶風(fēng)物品竟然銷量都有大幅增加,于是他們做了一個(gè)明智決策,就是將蛋撻的銷售位置移到了颶風(fēng)物品銷售區(qū)域旁邊,看起來是為了方便用戶挑選,但是沒有想到蛋撻的銷量因此又提高了很多。
還有一個(gè)有趣的例子,1948年遼沈戰(zhàn)役期間,司令員林彪要求每天要進(jìn)行例常的“每日軍情匯報(bào)”,由值班參謀讀出下屬各個(gè)縱隊(duì)、師、團(tuán)用電臺(tái)報(bào)告的當(dāng)日戰(zhàn)況和繳獲情況。那幾乎是重復(fù)著千篇一律枯燥無味的數(shù)據(jù):每支部隊(duì)殲敵多少、俘虜多少;繳獲的火炮、車輛多少,槍支、物資多少……有一天,參謀照例匯報(bào)當(dāng)日的戰(zhàn)況,林彪突然打斷他:“剛才念的在胡家窩棚那個(gè)戰(zhàn)斗的繳獲,你們聽到了嗎?”大家都很茫然,因?yàn)槿绱藨?zhàn)斗每天都有幾十起,不都是差不多一模一樣的枯燥數(shù)字嗎?林彪掃視一周,見無人回答,便接連問了三句:“為什么那里繳獲的短槍與長槍的比例比其它戰(zhàn)斗略高?”“為什么那里繳獲和擊毀的小車與大車的比例比其它戰(zhàn)斗略高?”“為什么在那里俘虜和擊斃的軍官與士兵的比例比其它戰(zhàn)斗略高?”林彪司令員大步走向掛滿軍用地圖的墻壁,指著地圖上的那個(gè)點(diǎn)說:“我猜想,不,我斷定!敵人的指揮所就在這里!”果然,部隊(duì)很快就抓住了敵方的指揮官廖耀湘,并取得這場重要戰(zhàn)役的勝利。