真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯網站制作重慶分公司

python如何解決不使用for計算兩組、多個矩形兩兩間的iou-創(chuàng)新互聯

這篇文章主要為大家展示了“python如何解決不使用for計算兩組、多個矩形兩兩間的iou”,內容簡而易懂,條理清晰,希望能夠幫助大家解決疑惑,下面讓小編帶領大家一起研究并學習一下“python如何解決不使用for計算兩組、多個矩形兩兩間的iou”這篇文章吧。

在灌南等地區(qū),都構建了全面的區(qū)域性戰(zhàn)略布局,加強發(fā)展的系統(tǒng)性、市場前瞻性、產品創(chuàng)新能力,以專注、極致的服務理念,為客戶提供成都網站設計、成都網站制作 網站設計制作按需定制,公司網站建設,企業(yè)網站建設,品牌網站制作,成都營銷網站建設,外貿網站建設,灌南網站建設費用合理。

解決問題: 不使用for計算兩組、多個矩形兩兩間的iou

使用numpy廣播的方法,在python程序中并不建議使用for語句,python中的for語句耗時較多,如果使用numpy廣播的思想將會提速不少。

代碼:

def calc_iou(bbox1, bbox2):
 if not isinstance(bbox1, np.ndarray):
  bbox1 = np.array(bbox1)
 if not isinstance(bbox2, np.ndarray):
  bbox2 = np.array(bbox2)
 xmin1, ymin1, xmax1, ymax1, = np.split(bbox1, 4, axis=-1)
 xmin2, ymin2, xmax2, ymax2, = np.split(bbox2, 4, axis=-1)
 
 area1 = (xmax1 - xmin1) * (ymax1 - ymin1)
 area2 = (xmax2 - xmin2) * (ymax2 - ymin2)
 
 ymin = np.maximum(ymin1, np.squeeze(ymin2, axis=-1))
 xmin = np.maximum(xmin1, np.squeeze(xmin2, axis=-1))
 ymax = np.minimum(ymax1, np.squeeze(ymax2, axis=-1))
 xmax = np.minimum(xmax1, np.squeeze(xmax2, axis=-1))
 
 h = np.maximum(ymax - ymin, 0)
 w = np.maximum(xmax - xmin, 0)
 intersect = h * w
 
 union = area1 + np.squeeze(area2, axis=-1) - intersect
 return intersect / union

程序中輸入為多個矩形[xmin, ymin, xmax,ymax]格式的數組或者list,輸出為numpy格式,例:輸入的shape為(3, 4)、(5,4)則輸出為(3, 5)各個位置為boxes間相互的iou值。后面會卡一個iou的閾值,然后就可以將滿足條件的索引取出。如:

def delete_bbox(bbox1, bbox2, roi_bbox1, roi_bbox2, class1, class2, idx1, idx2, iou_value):
 idx = np.where(iou_value > 0.4)
 left_idx = idx[0]
 right_idx = idx[1]
 left = roi_bbox1[left_idx]
 right = roi_bbox2[right_idx]
 xmin1, ymin1, xmax1, ymax1, = np.split(left, 4, axis=-1)
 xmin2, ymin2, xmax2, ymax2, = np.split(right, 4, axis=-1)
 left_area = (xmax1 - xmin1) * (ymax1 - ymin1)
 right_area = (xmax2 - xmin2) * (ymax2 - ymin2)
 left_idx = left_idx[np.squeeze(left_area < right_area, axis=-1)]#小的被刪
 right_idx = right_idx[np.squeeze(left_area > right_area, axis=-1)]
 
 bbox1 = np.delete(bbox1, idx1[left_idx], 0)
 class1 = np.delete(class1, idx1[left_idx])
 bbox2 = np.delete(bbox2, idx2[right_idx], 0)
 class2 = np.delete(class2, idx2[right_idx])
 
 return bbox1, bbox2, class1, class2

IOU計算原理:

python如何解決不使用for計算兩組、多個矩形兩兩間的iou

ymin = np.maximum(ymin1, np.squeeze(ymin2, axis=-1))

xmin = np.maximum(xmin1, np.squeeze(xmin2, axis=-1))

ymax = np.minimum(ymax1, np.squeeze(ymax2, axis=-1))

xmax = np.minimum(xmax1, np.squeeze(xmax2, axis=-1))

h = np.maximum(ymax - ymin, 0)

w = np.maximum(xmax - xmin, 0)

intersect = h * w

計算矩形間min的大值,max的最小值,如果ymax-ymin值大于0則如左圖所示,如果小于0則如右圖所示

以上是“python如何解決不使用for計算兩組、多個矩形兩兩間的iou”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注創(chuàng)新互聯行業(yè)資訊頻道!


當前題目:python如何解決不使用for計算兩組、多個矩形兩兩間的iou-創(chuàng)新互聯
網站網址:http://weahome.cn/article/dhdieo.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部