1、確定mysql有鎖表的情況則使用以下命令查看鎖表進程
創(chuàng)新互聯(lián)是一家專注于成都網(wǎng)站制作、成都網(wǎng)站建設與策劃設計,山東網(wǎng)站建設哪家好?創(chuàng)新互聯(lián)做網(wǎng)站,專注于網(wǎng)站建設10多年,網(wǎng)設計領(lǐng)域的專業(yè)建站公司;建站業(yè)務涵蓋:山東等地區(qū)。山東做網(wǎng)站價格咨詢:18982081108
2、殺掉查詢結(jié)果中已經(jīng)鎖表的trx_mysql_thread_id
擴展:
1、查看鎖的事務
2、查看等待鎖的事務
3、查詢是否鎖表:
4、查詢進程
可直接在mysql命令行執(zhí)行:show engine innodb status\G;
查看造成死鎖的sql語句,分析索引情況,然后優(yōu)化sql然后show processlist;
另外可以打開慢查詢?nèi)罩?,linux下打開需在my.cnf的[mysqld]里面加上以下內(nèi)容:
當你開始執(zhí)行一個 ALTER ,而你遇到了可怕的“元數(shù)據(jù)鎖定等待”,我敢肯定你一定遇見過。我最近遇到了一個案例,其中被更改的表要執(zhí)行一個很小范圍的更新(100行)。ALTER 在負載測試期間一直等待了幾個小時。在停止負載測試后,ALTER 按預期在不到一秒的時間內(nèi)就完成了。那么這里發(fā)生了什么?
檢查外鍵
每當有奇數(shù)次鎖定時,我的第一直覺就是檢查外鍵。當然這張表有一些外鍵引用了一個更繁忙的表。但是這種行為似乎仍然很奇怪。對表運行 ALTER 時,會針對子表請求一個 SHARED_UPGRADEABLE 元數(shù)據(jù)鎖。還有針對父級的 SHARED_READ_ONLY 元數(shù)據(jù)鎖。
我們來看看如何根據(jù)文檔獲取元數(shù)據(jù)鎖定[1]:
如果給定鎖定有多個服務器,則首先滿足最高優(yōu)先級鎖定請求,并且與 max_write_lock_count系統(tǒng)變量有關(guān)。寫鎖定請求的優(yōu)先級高于讀取鎖定請求。
[1]:
請務必注意鎖定順序是序列化的:語句逐個獲取元數(shù)據(jù)鎖,而不是同時獲取,并在此過程中執(zhí)行死鎖檢測。
通常在考慮隊列時考慮先進先出。如果我發(fā)出以下三個語句(按此順序),它們將按以下順序完成:
1. INSERT INTO parent2. ALTER TABLE child3. INSERT INTO parent
但是當子 ALTER 語句請求對父進行讀取鎖定時,盡管排序,但兩個插入將在 ALTER 之前完成。以下是可以演示此示例的示例場景:
數(shù)據(jù)初始化:
CREATE TABLE `parent` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`val` varchar(10) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
CREATE TABLE `child` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`parent_id` int(11) DEFAULT NULL,
`val` varchar(10) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `idx_parent` (`parent_id`),
CONSTRAINT `fk_parent` FOREIGN KEY (`parent_id`) REFERENCES `parent` (`id`) ON DELETE CASCADE ON UPDATE NO ACTION
) ENGINE=InnoDB;
INSERT INTO `parent` VALUES (1, "one"), (2, "two"), (3, "three"), (4, "four");
Session 1:
start transaction;update parent set val = "four-new" where id = 4;
Session 2:
alter table child add index `idx_new` (val);
Session 3:
start transaction;update parent set val = "three-new" where id = 3;
此時,會話 1 具有打開的事務,并且處于休眠狀態(tài),并在父級上授予寫入元數(shù)據(jù)鎖定。 會話 2 具有在子級上授予的可升級(寫入)鎖定,并且正在等待父級的讀取鎖定。最后會話 3 具有針對父級的授權(quán)寫入鎖定:
mysql select * from performance_schema.metadata_locks;+-------------+-------------+-------------------+---------------+-------------+| OBJECT_TYPE | OBJECT_NAME | LOCK_TYPE ? ? ? ? | LOCK_DURATION | LOCK_STATUS |+-------------+-------------+-------------------+---------------+-------------+| TABLE ? ? ? | child ? ? ? | SHARED_UPGRADABLE | TRANSACTION ? | GRANTED ? ? | - ALTER (S2)| TABLE ? ? ? | parent ? ? ?| SHARED_WRITE ? ? ?| TRANSACTION ? | GRANTED ? ? | - UPDATE (S1)| TABLE ? ? ? | parent ? ? ?| SHARED_WRITE ? ? ?| TRANSACTION ? | GRANTED ? ? | - UPDATE (S3)| TABLE ? ? ? | parent ? ? ?| SHARED_READ_ONLY ?| STATEMENT ? ? | PENDING ? ? | - ALTER (S2)+-------------+-------------+-------------------+---------------+-------------+
請注意,具有掛起鎖定狀態(tài)的唯一會話是會話 2(ALTER)。會話 1 和會話 3 (分別在 ALTER 之前和之后發(fā)布)都被授予了寫鎖。排序失敗的地方是在會話 1 上發(fā)生提交的時候。在考慮有序隊列時,人們會期望會話 2 獲得鎖定,事情就會繼續(xù)進行。但是,由于元數(shù)據(jù)鎖定系統(tǒng)的優(yōu)先級性質(zhì),會話 3 具有鎖定,會話 2 仍然等待。
如果另一個寫入會話進入并啟動新事務并獲取針對父表的寫鎖定,則即使會話 3 完成,ALTER 仍將被阻止。
只要我保持一個對父表打開元數(shù)據(jù)鎖定的活動事務,子表上的 ALTER 將永遠不會完成。更糟糕的是,由于子表上的寫鎖定成功(但是完整語句正在等待獲取父讀鎖定),所以針對子表的所有傳入讀取請求都將被阻止!
另外,請考慮一下您通常如何對無法完成的語句進行故障排除。您查看已經(jīng)打開較長時間的事務(在進程列表和 InnoDB 狀態(tài)中)。但由于阻塞線程現(xiàn)在比 ALTER 線程更年輕,因此您將看到的最舊的事務/線程是 ALTER 。
這正是這種情況下發(fā)生的情況。在準備發(fā)布時,我們的客戶端正在運行 ALTER 語句并結(jié)合負載測試(一種非常好的做法?。┮源_保順利發(fā)布。問題是負載測試保持對父表打開一個活動的寫事務。這并不是說它只是一直在寫,而是有多個線程,一個總是活躍的。 這阻止了 ALTER 完成并阻止對相對靜態(tài)的子表的隨后的讀請求。
幸運的是,這個問題有一個解決方案(除了從設計模式中驅(qū)逐外鍵)。變量?max_write_lock_count[2]?可用于允許在寫入鎖定之后在讀取鎖定之前授予讀取鎖定連續(xù)寫鎖。默認情況下,此變量設置為 18446744073709551615,如果你對該表發(fā)出 10,000 次寫入/秒,那么你的讀將被鎖定 5800 萬年……
1.查看表被鎖狀態(tài)
2.查看造成死鎖的sql語句
3.查詢進程
4.解鎖(刪除進程)
5.查看正在鎖的事物? (8.0以下版本)
6.查看等待鎖的事物?(8.0以下版本)
鎖是計算機協(xié)調(diào)多個進程或線程并發(fā)訪問某一資源的機制,在數(shù)據(jù)庫中,除傳統(tǒng)的計算資源(CPU、RAM、I/O)爭用外,數(shù)據(jù)也是一種供許多用戶共享的資源,如何保證數(shù)據(jù)并發(fā)訪問的一致性,有效性是所有數(shù)據(jù)庫必須解決的一個問題,鎖沖突也是影響數(shù)據(jù)庫并發(fā)訪問性能的一個重要因素,從這個角度來說,鎖對數(shù)據(jù)庫而言是尤其重要,也更加復雜。MySQL中的鎖,按照鎖的粒度分為:1、全局鎖,就鎖定數(shù)據(jù)庫中的所有表。2、表級鎖,每次操作鎖住整張表。3、行級鎖,每次操作鎖住對應的行數(shù)據(jù)。
全局鎖就是對整個數(shù)據(jù)庫實例加鎖,加鎖后整個實例就處于只讀狀態(tài),后續(xù)的DML的寫語句,DDL語句,已經(jīng)更新操作的事務提交語句都將阻塞。其典型的使用場景就是做全庫的邏輯備份,對所有的表進行鎖定,從而獲取一致性視圖,保證數(shù)據(jù)的完整性。但是對數(shù)據(jù)庫加全局鎖是有弊端的,如在主庫上備份,那么在備份期間都不能執(zhí)行更新,業(yè)務會受影響,第二如果是在從庫上備份,那么在備份期間從庫不能執(zhí)行主庫同步過來的二進制日志,會導致主從延遲。
解決辦法是在innodb引擎中,備份時加上--single-transaction參數(shù)來完成不加鎖的一致性數(shù)據(jù)備份。
添加全局鎖: flush tables with read lock; 解鎖 unlock tables。
表級鎖,每次操作會鎖住整張表.鎖定粒度大,發(fā)送鎖沖突的概率最高,并發(fā)讀最低,應用在myisam、innodb、BOB等存儲引擎中。表級鎖分為: 表鎖、元數(shù)據(jù)鎖(meta data lock, MDL)和意向鎖。
表鎖又分為: 表共享讀鎖 read lock、表獨占寫鎖write lock
語法: 1、加鎖 lock tables 表名 ... read/write
2、釋放鎖 unlock tables 或者關(guān)閉客戶端連接
注意: 讀鎖不會阻塞其它客戶端的讀,但是會阻塞其它客戶端的寫,寫鎖既會阻塞其它客戶端的讀,又會阻塞其它客戶端的寫。大家可以拿一張表來測試看看。
元數(shù)據(jù)鎖,在加鎖過程中是系統(tǒng)自動控制的,無需顯示使用,在訪問一張表的時候會自動加上,MDL鎖主要作用是維護表元數(shù)據(jù)的數(shù)據(jù)一致性,在表上有活動事務的時候,不可以對元數(shù)據(jù)進行寫入操作。為了避免DML和DDL沖突,保證讀寫的正確性。
在MySQL5.5中引入了MDL,當對一張表進行增刪改查的時候,加MDL讀鎖(共享);當對表結(jié)構(gòu)進行變更操作時,加MDL寫鎖(排他).
查看元數(shù)據(jù)鎖:
select object_type,object_schema,object_name,lock_type,lock_duration from performance_schema_metadata_locks;
意向鎖,為了避免DML在執(zhí)行時,加的行鎖與表鎖的沖突,在innodb中引入了意向鎖,使得表鎖不用檢查每行數(shù)據(jù)是否加鎖,使用意向鎖來減少表鎖的檢查。意向鎖分為,意向共享鎖is由語句select ... lock in share mode添加。意向排他鎖ix,由insert,update,delete,select。。。for update 添加。
select object_schema,object_name,index_name,lock_type,lock_mode,lock_data from performance_schema.data_lock;
行級鎖,每次操作鎖住對應的行數(shù)據(jù),鎖定粒度最小,發(fā)生鎖沖突的概率最高,并發(fā)讀最高,應用在innodb存儲引擎中。
innodb的數(shù)據(jù)是基于索引組織的,行鎖是通過對索引上的索引項加鎖來實現(xiàn)的,而不是對記錄加的鎖,對于行級鎖,主要分為以下三類:
1、行鎖或者叫record lock記錄鎖,鎖定單個行記錄的鎖,防止其他事物對次行進行update和delete操作,在RC,RR隔離級別下都支持。
2、間隙鎖Gap lock,鎖定索引記錄間隙(不含該記錄),確保索引記錄間隙不變,防止其他事物在這個間隙進行insert操作,產(chǎn)生幻讀,在RR隔離級別下都支持。
3、臨鍵鎖Next-key-lock,行鎖和間隙鎖組合,同時鎖住數(shù)據(jù),并鎖住數(shù)據(jù)前面的間隙Gap,在RR隔離級別下支持。
innodb實現(xiàn)了以下兩種類型的行鎖
1、共享鎖 S: 允許一個事務去讀一行,阻止其他事務獲得相同數(shù)據(jù)集的排他鎖。
2、排他鎖 X: 允許獲取排他鎖的事務更新數(shù)據(jù),阻止其他事務獲得相同數(shù)據(jù)集的共享鎖和排他鎖。
insert 語句 排他鎖 自動添加的
update語句 排他鎖 自動添加
delete 語句 排他鎖 自動添加
select 正常查詢語句 不加鎖 。。。
select 。。。lock in share mode 共享鎖 需要手動在select 之后加lock in share mode
select 。。。for update 排他鎖 需要手動在select之后添加for update
默認情況下,innodb在repeatable read事務隔離級別運行,innodb使用next-key鎖進行搜索和索引掃描,以防止幻讀。
間隙鎖唯一目的是防止其它事務插入間隙,間隙鎖可以共存,一個事務采用的間隙鎖不會阻止另一個事務在同一間隙上采用的間隙鎖。
以下五種方法可以快速定位全局鎖的位置,僅供參考。
方法1:利用 metadata_locks 視圖
此方法僅適用于 MySQL 5.7 以上版本,該版本 performance_schema 新增了 metadata_locks,如果上鎖前啟用了元數(shù)據(jù)鎖的探針(默認是未啟用的),可以比較容易的定位全局鎖會話。
方法2:利用 events_statements_history 視圖此方法適用于 MySQL 5.6 以上版本,啟用 performance_schema.eventsstatements_history(5.6 默認未啟用,5.7 默認啟用),該表會 SQL 歷史記錄執(zhí)行,如果請求太多,會自動清理早期的信息,有可能將上鎖會話的信息清理掉。
方法3:利用 gdb 工具如果上述兩種都用不了或者沒來得及啟用,可以嘗試第三種方法。利用 gdb 找到所有線程信息,查看每個線程中持有全局鎖對象,輸出對應的會話 ID,為了便于快速定位,我寫成了腳本形式。也可以使用 gdb 交互模式,但 attach mysql 進程后 mysql 會完全 hang 住,讀請求也會受到影響,不建議使用交互模式。
方法4:show processlist
如果備份程序使用的特定用戶執(zhí)行備份,如果是 root 用戶備份,那 time 值越大的是持鎖會話的概率越大,如果業(yè)務也用 root 訪問,重點是 state 和 info 為空的,這里有個小技巧可以快速篩選,篩選后嘗試 kill 對應 ID,再觀察是否還有 wait global read lock 狀態(tài)的會話。
方法5:重啟試試!